Struct collections::string::String [] [src]

pub struct String {
    // some fields omitted
}

A UTF-8 encoded, growable string.

The String type is the most common string type that has ownership over the contents of the string. It has a close relationship with its borrowed counterpart, the primitive str.

Examples

You can create a String from a literal string with String::from:

fn main() { let hello = String::from("Hello, world!"); }
let hello = String::from("Hello, world!");

You can append a [char] to a String with the push() method, and append a &str with the push_str() method:

fn main() { let mut hello = String::from("Hello, "); hello.push('w'); hello.push_str("orld!"); }
let mut hello = String::from("Hello, ");

hello.push('w');
hello.push_str("orld!");

If you have a vector of UTF-8 bytes, you can create a String from it with the from_utf8() method:

fn main() { // some bytes, in a vector let sparkle_heart = vec![240, 159, 146, 150]; // We know these bytes are valid, so we'll use `unwrap()`. let sparkle_heart = String::from_utf8(sparkle_heart).unwrap(); assert_eq!("💖", sparkle_heart); }
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();

assert_eq!("💖", sparkle_heart);

UTF-8

Strings are always valid UTF-8. This has a few implications, the first of which is that if you need a non-UTF-8 string, consider OsString. It is similar, but without the UTF-8 constraint. The second implication is that you cannot index into a String:

fn main() { let s = "hello"; println!("The first letter of s is {}", s[0]); // ERROR!!! }
let s = "hello";

println!("The first letter of s is {}", s[0]); // ERROR!!!

Indexing is intended to be a constant-time operation, but UTF-8 encoding does not allow us to do this. Furtheremore, it's not clear what sort of thing the index should return: a byte, a codepoint, or a grapheme cluster. The as_bytes() and chars() methods return iterators over the first two, respectively.

Deref

Strings implement Deref<Target=str>, and so inherit all of str's methods. In addition, this means that you can pass a String to any function which takes a &str by using an ampersand (&):

fn main() { fn takes_str(s: &str) { } let s = String::from("Hello"); takes_str(&s); }
fn takes_str(s: &str) { }

let s = String::from("Hello");

takes_str(&s);

This will create a &str from the String and pass it in. This conversion is very inexpensive, and so generally, functions will accept &strs as arguments unless they need a String for some specific reason.

Representation

A String is made up of three components: a pointer to some bytes, a length, and a capacity. The pointer points to an internal buffer String uses to store its data. The length is the number of bytes currently stored in the buffer, and the capacity is the size of the buffer in bytes. As such, the length will always be less than or equal to the capacity.

This buffer is always stored on the heap.

You can look at these with the as_ptr(), [len()], and [capacity()] methods:

fn main() { use std::mem; let story = String::from("Once upon a time..."); let ptr = story.as_ptr(); let len = story.len(); let capacity = story.capacity(); // story has thirteen bytes assert_eq!(19, len); // Now that we have our parts, we throw the story away. mem::forget(story); // We can re-build a String out of ptr, len, and capacity. This is all // unsafe becuase we are responsible for making sure the components are // valid: let s = unsafe { String::from_raw_parts(ptr as *mut _, len, capacity) } ; assert_eq!(String::from("Once upon a time..."), s); }
use std::mem;

let story = String::from("Once upon a time...");

let ptr = story.as_ptr();
let len = story.len();
let capacity = story.capacity();

// story has thirteen bytes
assert_eq!(19, len);

// Now that we have our parts, we throw the story away.
mem::forget(story);

// We can re-build a String out of ptr, len, and capacity. This is all
// unsafe becuase we are responsible for making sure the components are
// valid:
let s = unsafe { String::from_raw_parts(ptr as *mut _, len, capacity) } ;

assert_eq!(String::from("Once upon a time..."), s);

[len()]: # method.len [capacity()]: # method.capacity

If a String has enough capacity, adding elements to it will not re-allocate. For example, consider this program:

fn main() { let mut s = String::new(); println!("{}", s.capacity()); for _ in 0..5 { s.push_str("hello"); println!("{}", s.capacity()); } }
let mut s = String::new();

println!("{}", s.capacity());

for _ in 0..5 {
    s.push_str("hello");
    println!("{}", s.capacity());
}

This will output the following:

0
5
10
20
20
40

At first, we have no memory allocated at all, but as we append to the string, it increases its capacity appropriately. If we instead use the with_capacity() method to allocate the correct capacity initially:

fn main() { let mut s = String::with_capacity(25); println!("{}", s.capacity()); for _ in 0..5 { s.push_str("hello"); println!("{}", s.capacity()); } }
let mut s = String::with_capacity(25);

println!("{}", s.capacity());

for _ in 0..5 {
    s.push_str("hello");
    println!("{}", s.capacity());
}

We end up with a different output:

25
25
25
25
25
25

Here, there's no need to allocate more memory inside the loop.

Methods

impl String

fn new() -> String

Creates a new string buffer initialized with the empty string.

Examples

fn main() { #![allow(unused_mut)] let mut s = String::new(); }
let mut s = String::new();

fn with_capacity(capacity: usize) -> String

Creates a new string buffer with the given capacity. The string will be able to hold exactly capacity bytes without reallocating. If capacity is 0, the string will not allocate.

Examples

fn main() { let mut s = String::with_capacity(10); // The String contains no chars, even though it has capacity for more assert_eq!(s.len(), 0); // These are all done without reallocating... let cap = s.capacity(); for i in 0..10 { s.push('a'); } assert_eq!(s.capacity(), cap); // ...but this may make the vector reallocate s.push('a'); }
let mut s = String::with_capacity(10);

// The String contains no chars, even though it has capacity for more
assert_eq!(s.len(), 0);

// These are all done without reallocating...
let cap = s.capacity();
for i in 0..10 {
    s.push('a');
}

assert_eq!(s.capacity(), cap);

// ...but this may make the vector reallocate
s.push('a');

fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error>

Converts a vector of bytes to a String.

A string slice (&str) is made of bytes (u8), and a vector of bytes (Vec<u8>) is made of bytes, so this function converts between the two. Not all byte slices are valid Strings, however: String requires that it is valid UTF-8. from_utf8() checks to ensure that the bytes are valid UTF-8, and then does the conversion.

If you are sure that the byte slice is valid UTF-8, and you don't want to incur the overhead of the validity check, there is an unsafe version of this function, from_utf8_unchecked(), which has the same behavior but skips the check.

This method will take care to not copy the vector, for efficiency's sake.

If you need a &str instead of a String, consider str::from_utf8().

Failure

Returns Err if the slice is not UTF-8 with a description as to why the provided bytes are not UTF-8. The vector you moved in is also included.

Examples

Basic usage:

fn main() { // some bytes, in a vector let sparkle_heart = vec![240, 159, 146, 150]; // We know these bytes are valid, so we'll use `unwrap()`. let sparkle_heart = String::from_utf8(sparkle_heart).unwrap(); assert_eq!("💖", sparkle_heart); }
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();

assert_eq!("💖", sparkle_heart);

Incorrect bytes:

fn main() { // some invalid bytes, in a vector let sparkle_heart = vec![0, 159, 146, 150]; assert!(String::from_utf8(sparkle_heart).is_err()); }
// some invalid bytes, in a vector
let sparkle_heart = vec![0, 159, 146, 150];

assert!(String::from_utf8(sparkle_heart).is_err());

See the docs for FromUtf8Error for more details on what you can do with this error.

fn from_utf8_lossy<'a>(v: &'a [u8]) -> Cow<'a, str>

Converts a slice of bytes to a String, including invalid characters.

A string slice (&str) is made of bytes (u8), and a slice of bytes (&[u8]) is made of bytes, so this function converts between the two. Not all byte slices are valid string slices, however: &str requires that it is valid UTF-8. During this conversion, from_utf8_lossy() will replace any invalid UTF-8 sequences with U+FFFD REPLACEMENT CHARACTER, which looks like this: �

If you are sure that the byte slice is valid UTF-8, and you don't want to incur the overhead of the conversion, there is an unsafe version of this function, from_utf8_unchecked(), which has the same behavior but skips the checks.

If you need a &str instead of a String, consider str::from_utf8().

Examples

Basic usage:

fn main() { // some bytes, in a vector let sparkle_heart = vec![240, 159, 146, 150]; // We know these bytes are valid, so we'll use `unwrap()`. let sparkle_heart = String::from_utf8(sparkle_heart).unwrap(); assert_eq!("💖", sparkle_heart); }
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();

assert_eq!("💖", sparkle_heart);

Incorrect bytes:

fn main() { // some invalid bytes let input = b"Hello \xF0\x90\x80World"; let output = String::from_utf8_lossy(input); assert_eq!("Hello �World", output); }
// some invalid bytes
let input = b"Hello \xF0\x90\x80World";
let output = String::from_utf8_lossy(input);

assert_eq!("Hello �World", output);

fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error>

Decode a UTF-16 encoded vector v into a String, returning None if v contains any invalid data.

Examples

fn main() { // 𝄞music let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0x0069, 0x0063]; assert_eq!(String::from_utf16(v).unwrap(), "𝄞music".to_string()); // 𝄞mu<invalid>ic let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, 0xD800, 0x0069, 0x0063]; assert!(String::from_utf16(v).is_err()); }
// 𝄞music
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
          0x0073, 0x0069, 0x0063];
assert_eq!(String::from_utf16(v).unwrap(),
           "𝄞music".to_string());

// 𝄞mu<invalid>ic
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
          0xD800, 0x0069, 0x0063];
assert!(String::from_utf16(v).is_err());

fn from_utf16_lossy(v: &[u16]) -> String

Decode a UTF-16 encoded vector v into a string, replacing invalid data with the replacement character (U+FFFD).

Examples

fn main() { // 𝄞mus<invalid>ic<invalid> let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0xDD1E, 0x0069, 0x0063, 0xD834]; assert_eq!(String::from_utf16_lossy(v), "𝄞mus\u{FFFD}ic\u{FFFD}".to_string()); }
// 𝄞mus<invalid>ic<invalid>
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
          0x0073, 0xDD1E, 0x0069, 0x0063,
          0xD834];

assert_eq!(String::from_utf16_lossy(v),
           "𝄞mus\u{FFFD}ic\u{FFFD}".to_string());

unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String

Creates a new String from a length, capacity, and pointer.

Safety

This is very unsafe because:

  • We call Vec::from_raw_parts to get a Vec<u8>. Therefore, this function inherits all of its unsafety, see its documentation for the invariants it expects, they also apply to this function.
  • We assume that the Vec contains valid UTF-8.

unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String

Converts a vector of bytes to a String without checking that the string contains valid UTF-8.

See the safe version, from_utf8(), for more.

Safety

This function is unsafe because it does not check that the bytes passed to it are valid UTF-8. If this constraint is violated, undefined behavior results, as the rest of Rust assumes that Strings are valid UTF-8.

Examples

Basic usage:

fn main() { // some bytes, in a vector let sparkle_heart = vec![240, 159, 146, 150]; let sparkle_heart = unsafe { String::from_utf8_unchecked(sparkle_heart) }; assert_eq!("💖", sparkle_heart); }
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

let sparkle_heart = unsafe {
    String::from_utf8_unchecked(sparkle_heart)
};

assert_eq!("💖", sparkle_heart);

fn into_bytes(self) -> Vec<u8>

Returns the underlying byte buffer, encoded as UTF-8.

Examples

fn main() { let s = String::from("hello"); let bytes = s.into_bytes(); assert_eq!(bytes, [104, 101, 108, 108, 111]); }
let s = String::from("hello");
let bytes = s.into_bytes();
assert_eq!(bytes, [104, 101, 108, 108, 111]);

fn as_str(&self) -> &str

Unstable (convert #27729)

: waiting on RFC revision

Extracts a string slice containing the entire string.

fn push_str(&mut self, string: &str)

Pushes the given string onto this string buffer.

Examples

fn main() { let mut s = String::from("foo"); s.push_str("bar"); assert_eq!(s, "foobar"); }
let mut s = String::from("foo");
s.push_str("bar");
assert_eq!(s, "foobar");

fn capacity(&self) -> usize

Returns the number of bytes that this string buffer can hold without reallocating.

Examples

fn main() { let s = String::with_capacity(10); assert!(s.capacity() >= 10); }
let s = String::with_capacity(10);
assert!(s.capacity() >= 10);

fn reserve(&mut self, additional: usize)

Reserves capacity for at least additional more bytes to be inserted in the given String. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new capacity overflows usize.

Examples

fn main() { let mut s = String::new(); s.reserve(10); assert!(s.capacity() >= 10); }
let mut s = String::new();
s.reserve(10);
assert!(s.capacity() >= 10);

fn reserve_exact(&mut self, additional: usize)

Reserves the minimum capacity for exactly additional more bytes to be inserted in the given String. Does nothing if the capacity is already sufficient.

Note that the allocator may give the collection more space than it requests. Therefore capacity can not be relied upon to be precisely minimal. Prefer reserve if future insertions are expected.

Panics

Panics if the new capacity overflows usize.

Examples

fn main() { let mut s = String::new(); s.reserve_exact(10); assert!(s.capacity() >= 10); }
let mut s = String::new();
s.reserve_exact(10);
assert!(s.capacity() >= 10);

fn shrink_to_fit(&mut self)

Shrinks the capacity of this string buffer to match its length.

Examples

fn main() { let mut s = String::from("foo"); s.reserve(100); assert!(s.capacity() >= 100); s.shrink_to_fit(); assert_eq!(s.capacity(), 3); }
let mut s = String::from("foo");
s.reserve(100);
assert!(s.capacity() >= 100);
s.shrink_to_fit();
assert_eq!(s.capacity(), 3);

fn push(&mut self, ch: char)

Adds the given character to the end of the string.

Examples

fn main() { let mut s = String::from("abc"); s.push('1'); s.push('2'); s.push('3'); assert_eq!(s, "abc123"); }
let mut s = String::from("abc");
s.push('1');
s.push('2');
s.push('3');
assert_eq!(s, "abc123");

fn as_bytes(&self) -> &[u8]

Works with the underlying buffer as a byte slice.

Examples

fn main() { let s = String::from("hello"); assert_eq!(s.as_bytes(), [104, 101, 108, 108, 111]); }
let s = String::from("hello");
assert_eq!(s.as_bytes(), [104, 101, 108, 108, 111]);

fn truncate(&mut self, new_len: usize)

Shortens a string to the specified length.

Panics

Panics if new_len > current length, or if new_len is not a character boundary.

Examples

fn main() { let mut s = String::from("hello"); s.truncate(2); assert_eq!(s, "he"); }
let mut s = String::from("hello");
s.truncate(2);
assert_eq!(s, "he");

fn pop(&mut self) -> Option<char>

Removes the last character from the string buffer and returns it. Returns None if this string buffer is empty.

Examples

fn main() { let mut s = String::from("foo"); assert_eq!(s.pop(), Some('o')); assert_eq!(s.pop(), Some('o')); assert_eq!(s.pop(), Some('f')); assert_eq!(s.pop(), None); }
let mut s = String::from("foo");
assert_eq!(s.pop(), Some('o'));
assert_eq!(s.pop(), Some('o'));
assert_eq!(s.pop(), Some('f'));
assert_eq!(s.pop(), None);

fn remove(&mut self, idx: usize) -> char

Removes the character from the string buffer at byte position idx and returns it.

Warning

This is an O(n) operation as it requires copying every element in the buffer.

Panics

If idx does not lie on a character boundary, or if it is out of bounds, then this function will panic.

Examples

fn main() { let mut s = String::from("foo"); assert_eq!(s.remove(0), 'f'); assert_eq!(s.remove(1), 'o'); assert_eq!(s.remove(0), 'o'); }
let mut s = String::from("foo");
assert_eq!(s.remove(0), 'f');
assert_eq!(s.remove(1), 'o');
assert_eq!(s.remove(0), 'o');

fn insert(&mut self, idx: usize, ch: char)

Inserts a character into the string buffer at byte position idx.

Warning

This is an O(n) operation as it requires copying every element in the buffer.

Panics

If idx does not lie on a character boundary or is out of bounds, then this function will panic.

unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8>

Views the string buffer as a mutable sequence of bytes.

This is unsafe because it does not check to ensure that the resulting string will be valid UTF-8.

Examples

fn main() { let mut s = String::from("hello"); unsafe { let vec = s.as_mut_vec(); assert!(vec == &[104, 101, 108, 108, 111]); vec.reverse(); } assert_eq!(s, "olleh"); }
let mut s = String::from("hello");
unsafe {
    let vec = s.as_mut_vec();
    assert!(vec == &[104, 101, 108, 108, 111]);
    vec.reverse();
}
assert_eq!(s, "olleh");

fn len(&self) -> usize

Returns the number of bytes in this string.

Examples

fn main() { let a = "foo".to_string(); assert_eq!(a.len(), 3); }
let a = "foo".to_string();
assert_eq!(a.len(), 3);

fn is_empty(&self) -> bool

Returns true if the string contains no bytes

Examples

fn main() { let mut v = String::new(); assert!(v.is_empty()); v.push('a'); assert!(!v.is_empty()); }
let mut v = String::new();
assert!(v.is_empty());
v.push('a');
assert!(!v.is_empty());

fn clear(&mut self)

Truncates the string, returning it to 0 length.

Examples

fn main() { let mut s = "foo".to_string(); s.clear(); assert!(s.is_empty()); }
let mut s = "foo".to_string();
s.clear();
assert!(s.is_empty());

fn drain<R>(&mut self, range: R) -> Drain where R: RangeArgument<usize>

Create a draining iterator that removes the specified range in the string and yields the removed chars from start to end. The element range is removed even if the iterator is not consumed until the end.

Panics

Panics if the starting point or end point are not on character boundaries, or if they are out of bounds.

Examples

fn main() { let mut s = String::from("α is alpha, β is beta"); let beta_offset = s.find('β').unwrap_or(s.len()); // Remove the range up until the β from the string let t: String = s.drain(..beta_offset).collect(); assert_eq!(t, "α is alpha, "); assert_eq!(s, "β is beta"); // A full range clears the string s.drain(..); assert_eq!(s, ""); }
let mut s = String::from("α is alpha, β is beta");
let beta_offset = s.find('β').unwrap_or(s.len());

// Remove the range up until the β from the string
let t: String = s.drain(..beta_offset).collect();
assert_eq!(t, "α is alpha, ");
assert_eq!(s, "β is beta");

// A full range clears the string
s.drain(..);
assert_eq!(s, "");

fn into_boxed_str(self) -> Box<str>

Converts the string into Box<str>.

Note that this will drop any excess capacity.

fn into_boxed_slice(self) -> Box<str>

Deprecated since 1.4.0

: renamed to into_boxed_str

Converts the string into Box<str>.

Note that this will drop any excess capacity.

Trait Implementations

impl Borrow<str> for String

fn borrow(&self) -> &str

impl Clone for String

fn clone(&self) -> Self

fn clone_from(&mut self, source: &Self)

impl FromIterator<char> for String

fn from_iter<I: IntoIterator<Item=char>>(iterable: I) -> String

impl<'a> FromIterator<&'a str> for String

fn from_iter<I: IntoIterator<Item=&'a str>>(iterable: I) -> String

impl FromIterator<String> for String

fn from_iter<I: IntoIterator<Item=String>>(iterable: I) -> String

impl Extend<char> for String

fn extend<I: IntoIterator<Item=char>>(&mut self, iterable: I)

impl<'a> Extend<&'a char> for String

fn extend<I: IntoIterator<Item=&'a char>>(&mut self, iterable: I)

impl<'a> Extend<&'a str> for String

fn extend<I: IntoIterator<Item=&'a str>>(&mut self, iterable: I)

impl Extend<String> for String

fn extend<I: IntoIterator<Item=String>>(&mut self, iterable: I)

impl<'a, 'b> Pattern<'a> for &'b String

A convenience impl that delegates to the impl for &str

type Searcher = &'b str::Searcher

fn into_searcher(self, haystack: &'a str) -> &'b str::Searcher

fn is_contained_in(self, haystack: &'a str) -> bool

fn is_prefix_of(self, haystack: &'a str) -> bool

fn is_suffix_of(self, haystack: &'a str) -> bool where Self::Searcher: ReverseSearcher<'a>

impl PartialEq for String

fn eq(&self, other: &String) -> bool

fn ne(&self, other: &String) -> bool

impl<'a, 'b> PartialEq<str> for String

fn eq(&self, other: &str) -> bool

fn ne(&self, other: &str) -> bool

impl<'a, 'b> PartialEq<&'a str> for String

fn eq(&self, other: &&'a str) -> bool

fn ne(&self, other: &&'a str) -> bool

impl<'a, 'b> PartialEq<Cow<'a, str>> for String

fn eq(&self, other: &Cow<'a, str>) -> bool

fn ne(&self, other: &Cow<'a, str>) -> bool

impl Default for String

fn default() -> String

impl Display for String

fn fmt(&self, f: &mut Formatter) -> Result

impl Debug for String

fn fmt(&self, f: &mut Formatter) -> Result

impl Hash for String

fn hash<H: Hasher>(&self, hasher: &mut H)

fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher

impl<'a> Add<&'a str> for String

type Output = String

fn add(self, other: &str) -> String

impl Index<Range<usize>> for String

type Output = str

fn index(&self, index: Range<usize>) -> &str

impl Index<RangeTo<usize>> for String

type Output = str

fn index(&self, index: RangeTo<usize>) -> &str

impl Index<RangeFrom<usize>> for String

type Output = str

fn index(&self, index: RangeFrom<usize>) -> &str

impl Index<RangeFull> for String

type Output = str

fn index(&self, _index: RangeFull) -> &str

impl IndexMut<Range<usize>> for String

fn index_mut(&mut self, index: Range<usize>) -> &mut str

impl IndexMut<RangeTo<usize>> for String

fn index_mut(&mut self, index: RangeTo<usize>) -> &mut str

impl IndexMut<RangeFrom<usize>> for String

fn index_mut(&mut self, index: RangeFrom<usize>) -> &mut str

impl IndexMut<RangeFull> for String

fn index_mut(&mut self, _index: RangeFull) -> &mut str

impl Deref for String

type Target = str

fn deref(&self) -> &str

impl DerefMut for String

fn deref_mut(&mut self) -> &mut str

impl FromStr for String

type Err = ParseError

fn from_str(s: &str) -> Result<String, ParseError>

impl AsRef<str> for String

fn as_ref(&self) -> &str

impl AsRef<[u8]> for String

fn as_ref(&self) -> &[u8]

impl<'a> From<&'a str> for String

fn from(s: &'a str) -> String

impl Into<Vec<u8>> for String

fn into(self) -> Vec<u8>

impl IntoCow<'static, str> for String

fn into_cow(self) -> Cow<'static, str>

impl Write for String

fn write_str(&mut self, s: &str) -> Result

fn write_char(&mut self, c: char) -> Result

fn write_fmt(&mut self, args: Arguments) -> Result<(), Error>

Derived Implementations

impl Ord for String

fn cmp(&self, __arg_0: &String) -> Ordering

impl Eq for String

impl PartialOrd for String

fn partial_cmp(&self, __arg_0: &String) -> Option<Ordering>

fn lt(&self, __arg_0: &String) -> bool

fn le(&self, __arg_0: &String) -> bool

fn gt(&self, __arg_0: &String) -> bool

fn ge(&self, __arg_0: &String) -> bool