Primitive Type f32 [−]
The 32-bit floating point type.
Methods
impl f32
fn from_str_radix(s: &str, radix: u32) -> Result<f32, ParseFloatError>
: unclear how useful or correct this is
Parses a float as with a given radix
fn is_nan(self) -> bool
Returns true
if this value is NaN
and false otherwise.
use std::f32; let nan = f32::NAN; let f = 7.0_f32; assert!(nan.is_nan()); assert!(!f.is_nan());
fn is_infinite(self) -> bool
Returns true
if this value is positive infinity or negative infinity and
false otherwise.
use std::f32; let f = 7.0f32; let inf = f32::INFINITY; let neg_inf = f32::NEG_INFINITY; let nan = f32::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());
fn is_finite(self) -> bool
Returns true
if this number is neither infinite nor NaN
.
use std::f32; let f = 7.0f32; let inf = f32::INFINITY; let neg_inf = f32::NEG_INFINITY; let nan = f32::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());
fn is_normal(self) -> bool
Returns true
if the number is neither zero, infinite,
subnormal, or NaN
.
use std::f32; let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 let max = f32::MAX; let lower_than_min = 1.0e-40_f32; let zero = 0.0_f32; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f32::NAN.is_normal()); assert!(!f32::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());
fn classify(self) -> FpCategory
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
fn main() { use std::num::FpCategory; use std::f32; let num = 12.4_f32; let inf = f32::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite); }use std::num::FpCategory; use std::f32; let num = 12.4_f32; let inf = f32::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);
fn integer_decode(self) -> (u64, i16, i8)
Returns the mantissa, base 2 exponent, and sign as integers, respectively.
The original number can be recovered by sign * mantissa * 2 ^ exponent
.
The floating point encoding is documented in the Reference.
#![feature(float_extras)] use std::f32; let num = 2.0f32; // (8388608, -22, 1) let (mantissa, exponent, sign) = num.integer_decode(); let sign_f = sign as f32; let mantissa_f = mantissa as f32; let exponent_f = num.powf(exponent as f32); // 1 * 8388608 * 2^(-22) == 2 let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); assert!(abs_difference <= f32::EPSILON);
fn floor(self) -> f32
Returns the largest integer less than or equal to a number.
fn main() { let f = 3.99_f32; let g = 3.0_f32; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0); }let f = 3.99_f32; let g = 3.0_f32; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);
fn ceil(self) -> f32
Returns the smallest integer greater than or equal to a number.
fn main() { let f = 3.01_f32; let g = 4.0_f32; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0); }let f = 3.01_f32; let g = 4.0_f32; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);
fn round(self) -> f32
Returns the nearest integer to a number. Round half-way cases away from
0.0
.
let f = 3.3_f32; let g = -3.3_f32; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);
fn trunc(self) -> f32
Returns the integer part of a number.
fn main() { let f = 3.3_f32; let g = -3.7_f32; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0); }let f = 3.3_f32; let g = -3.7_f32; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);
fn fract(self) -> f32
Returns the fractional part of a number.
fn main() { use std::f32; let x = 3.5_f32; let y = -3.5_f32; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON); }use std::f32; let x = 3.5_f32; let y = -3.5_f32; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON);
fn abs(self) -> f32
Computes the absolute value of self
. Returns NAN
if the
number is NAN
.
use std::f32; let x = 3.5_f32; let y = -3.5_f32; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON); assert!(f32::NAN.abs().is_nan());
fn signum(self) -> f32
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
NAN
if the number isNAN
use std::f32; let f = 3.5_f32; assert_eq!(f.signum(), 1.0); assert_eq!(f32::NEG_INFINITY.signum(), -1.0); assert!(f32::NAN.signum().is_nan());
fn is_sign_positive(self) -> bool
Returns true
if self
's sign bit is positive, including
+0.0
and INFINITY
.
use std::f32; let nan = f32::NAN; let f = 7.0_f32; let g = -7.0_f32; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive()); // Requires both tests to determine if is `NaN` assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
fn is_sign_negative(self) -> bool
Returns true
if self
's sign is negative, including -0.0
and NEG_INFINITY
.
use std::f32; let nan = f32::NAN; let f = 7.0f32; let g = -7.0f32; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative()); // Requires both tests to determine if is `NaN`. assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
fn mul_add(self, a: f32, b: f32) -> f32
Fused multiply-add. Computes (self * a) + b
with only one rounding
error. This produces a more accurate result with better performance than
a separate multiplication operation followed by an add.
use std::f32; let m = 10.0_f32; let x = 4.0_f32; let b = 60.0_f32; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference <= f32::EPSILON);
fn recip(self) -> f32
Takes the reciprocal (inverse) of a number, 1/x
.
use std::f32; let x = 2.0_f32; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference <= f32::EPSILON);
fn powi(self, n: i32) -> f32
Raises a number to an integer power.
Using this function is generally faster than using powf
use std::f32; let x = 2.0_f32; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference <= f32::EPSILON);
fn powf(self, n: f32) -> f32
Raises a number to a floating point power.
fn main() { use std::f32; let x = 2.0_f32; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference <= f32::EPSILON); }use std::f32; let x = 2.0_f32; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference <= f32::EPSILON);
fn sqrt(self) -> f32
Takes the square root of a number.
Returns NaN if self
is a negative number.
use std::f32; let positive = 4.0_f32; let negative = -4.0_f32; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference <= f32::EPSILON); assert!(negative.sqrt().is_nan());
fn exp(self) -> f32
Returns e^(self)
, (the exponential function).
use std::f32; let one = 1.0f32; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);
fn exp2(self) -> f32
Returns 2^(self)
.
use std::f32; let f = 2.0f32; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference <= f32::EPSILON);
fn ln(self) -> f32
Returns the natural logarithm of the number.
fn main() { use std::f32; let one = 1.0f32; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON); }use std::f32; let one = 1.0f32; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);
fn log(self, base: f32) -> f32
Returns the logarithm of the number with respect to an arbitrary base.
fn main() { use std::f32; let ten = 10.0f32; let two = 2.0f32; // log10(10) - 1 == 0 let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); // log2(2) - 1 == 0 let abs_difference_2 = (two.log(2.0) - 1.0).abs(); assert!(abs_difference_10 <= f32::EPSILON); assert!(abs_difference_2 <= f32::EPSILON); }use std::f32; let ten = 10.0f32; let two = 2.0f32; // log10(10) - 1 == 0 let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); // log2(2) - 1 == 0 let abs_difference_2 = (two.log(2.0) - 1.0).abs(); assert!(abs_difference_10 <= f32::EPSILON); assert!(abs_difference_2 <= f32::EPSILON);
fn log2(self) -> f32
Returns the base 2 logarithm of the number.
fn main() { use std::f32; let two = 2.0f32; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON); }use std::f32; let two = 2.0f32; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);
fn log10(self) -> f32
Returns the base 10 logarithm of the number.
fn main() { use std::f32; let ten = 10.0f32; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON); }use std::f32; let ten = 10.0f32; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);
fn to_degrees(self) -> f32
Converts radians to degrees.
#![feature(float_extras)] fn main() { use std::f32::{self, consts}; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference <= f32::EPSILON); }#![feature(float_extras)] use std::f32::{self, consts}; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference <= f32::EPSILON);
fn to_radians(self) -> f32
Converts degrees to radians.
#![feature(float_extras)] fn main() { use std::f32::{self, consts}; let angle = 180.0f32; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference <= f32::EPSILON); }#![feature(float_extras)] use std::f32::{self, consts}; let angle = 180.0f32; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference <= f32::EPSILON);
fn ldexp(x: f32, exp: isize) -> f32
Constructs a floating point number of x*2^exp
.
#![feature(float_extras)] use std::f32; // 3*2^2 - 12 == 0 let abs_difference = (f32::ldexp(3.0, 2) - 12.0).abs(); assert!(abs_difference <= f32::EPSILON);
fn frexp(self) -> (f32, isize)
Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
self = x * 2^exp
0.5 <= abs(x) < 1.0
#![feature(float_extras)] use std::f32; let x = 4.0f32; // (1/2)*2^3 -> 1 * 8/2 -> 4.0 let f = x.frexp(); let abs_difference_0 = (f.0 - 0.5).abs(); let abs_difference_1 = (f.1 as f32 - 3.0).abs(); assert!(abs_difference_0 <= f32::EPSILON); assert!(abs_difference_1 <= f32::EPSILON);
fn next_after(self, other: f32) -> f32
Returns the next representable floating-point value in the direction of
other
.
#![feature(float_extras)] use std::f32; let x = 1.0f32; let abs_diff = (x.next_after(2.0) - 1.00000011920928955078125_f32).abs(); assert!(abs_diff <= f32::EPSILON);
fn max(self, other: f32) -> f32
Returns the maximum of the two numbers.
fn main() { let x = 1.0f32; let y = 2.0f32; assert_eq!(x.max(y), y); }let x = 1.0f32; let y = 2.0f32; assert_eq!(x.max(y), y);
If one of the arguments is NaN, then the other argument is returned.
fn min(self, other: f32) -> f32
Returns the minimum of the two numbers.
fn main() { let x = 1.0f32; let y = 2.0f32; assert_eq!(x.min(y), x); }let x = 1.0f32; let y = 2.0f32; assert_eq!(x.min(y), x);
If one of the arguments is NaN, then the other argument is returned.
fn abs_sub(self, other: f32) -> f32
The positive difference of two numbers.
- If
self <= other
:0:0
- Else:
self - other
use std::f32; let x = 3.0f32; let y = -3.0f32; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON);
fn cbrt(self) -> f32
Takes the cubic root of a number.
fn main() { use std::f32; let x = 8.0f32; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference <= f32::EPSILON); }use std::f32; let x = 8.0f32; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference <= f32::EPSILON);
fn hypot(self, other: f32) -> f32
Calculates the length of the hypotenuse of a right-angle triangle given
legs of length x
and y
.
use std::f32; let x = 2.0f32; let y = 3.0f32; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference <= f32::EPSILON);
fn sin(self) -> f32
Computes the sine of a number (in radians).
fn main() { use std::f32; let x = f32::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON); }use std::f32; let x = f32::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);
fn cos(self) -> f32
Computes the cosine of a number (in radians).
fn main() { use std::f32; let x = 2.0*f32::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON); }use std::f32; let x = 2.0*f32::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);
fn tan(self) -> f32
Computes the tangent of a number (in radians).
fn main() { use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-10); }use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn asin(self) -> f32
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
fn main() { use std::f32; let f = f32::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = f.sin().asin().abs_sub(f32::consts::PI / 2.0); assert!(abs_difference <= f32::EPSILON); }use std::f32; let f = f32::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = f.sin().asin().abs_sub(f32::consts::PI / 2.0); assert!(abs_difference <= f32::EPSILON);
fn acos(self) -> f32
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
fn main() { use std::f32; let f = f32::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = f.cos().acos().abs_sub(f32::consts::PI / 4.0); assert!(abs_difference <= f32::EPSILON); }use std::f32; let f = f32::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = f.cos().acos().abs_sub(f32::consts::PI / 4.0); assert!(abs_difference <= f32::EPSILON);
fn atan(self) -> f32
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
fn main() { use std::f32; let f = 1.0f32; // atan(tan(1)) let abs_difference = f.tan().atan().abs_sub(1.0); assert!(abs_difference <= f32::EPSILON); }use std::f32; let f = 1.0f32; // atan(tan(1)) let abs_difference = f.tan().atan().abs_sub(1.0); assert!(abs_difference <= f32::EPSILON);
fn atan2(self, other: f32) -> f32
Computes the four quadrant arctangent of self
(y
) and other
(x
).
x = 0
,y = 0
:0
x >= 0
:arctan(y/x)
->[-pi/2, pi/2]
y >= 0
:arctan(y/x) + pi
->(pi/2, pi]
y < 0
:arctan(y/x) - pi
->(-pi, -pi/2)
use std::f32; let pi = f32::consts::PI; // All angles from horizontal right (+x) // 45 deg counter-clockwise let x1 = 3.0f32; let y1 = -3.0f32; // 135 deg clockwise let x2 = -3.0f32; let y2 = 3.0f32; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 <= f32::EPSILON); assert!(abs_difference_2 <= f32::EPSILON);
fn sin_cos(self) -> (f32, f32)
Simultaneously computes the sine and cosine of the number, x
. Returns
(sin(x), cos(x))
.
use std::f32; let x = f32::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 <= f32::EPSILON); assert!(abs_difference_0 <= f32::EPSILON);
fn exp_m1(self) -> f32
Returns e^(self) - 1
in a way that is accurate even if the
number is close to zero.
let x = 7.0f64; // e^(ln(7)) - 1 let abs_difference = x.ln().exp_m1().abs_sub(6.0); assert!(abs_difference < 1e-10);
fn ln_1p(self) -> f32
Returns ln(1+n)
(natural logarithm) more accurately than if
the operations were performed separately.
use std::f32; let x = f32::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);
fn sinh(self) -> f32
Hyperbolic sine function.
fn main() { use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference <= f32::EPSILON); }use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference <= f32::EPSILON);
fn cosh(self) -> f32
Hyperbolic cosine function.
fn main() { use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = f.abs_sub(g); // Same result assert!(abs_difference <= f32::EPSILON); }use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = f.abs_sub(g); // Same result assert!(abs_difference <= f32::EPSILON);
fn tanh(self) -> f32
Hyperbolic tangent function.
fn main() { use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference <= f32::EPSILON); }use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference <= f32::EPSILON);
fn asinh(self) -> f32
Inverse hyperbolic sine function.
fn main() { use std::f32; let x = 1.0f32; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference <= f32::EPSILON); }use std::f32; let x = 1.0f32; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference <= f32::EPSILON);
fn acosh(self) -> f32
Inverse hyperbolic cosine function.
fn main() { use std::f32; let x = 1.0f32; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference <= f32::EPSILON); }use std::f32; let x = 1.0f32; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference <= f32::EPSILON);
fn atanh(self) -> f32
Inverse hyperbolic tangent function.
fn main() { use std::f32; let e = f32::consts::E; let f = e.tanh().atanh(); let abs_difference = f.abs_sub(e); assert!(abs_difference <= f32::EPSILON); }use std::f32; let e = f32::consts::E; let f = e.tanh().atanh(); let abs_difference = f.abs_sub(e); assert!(abs_difference <= f32::EPSILON);