Struct std::string::String [] [src]

pub struct String {
    // some fields omitted
}

A UTF-8 encoded, growable string.

The String type is the most common string type that has ownership over the contents of the string. It has a close relationship with its borrowed counterpart, the primitive str.

Examples

You can create a String from a literal string with String::from:

fn main() { let hello = String::from("Hello, world!"); }
let hello = String::from("Hello, world!");

You can append a [char] to a String with the push() method, and append a &str with the push_str() method:

fn main() { let mut hello = String::from("Hello, "); hello.push('w'); hello.push_str("orld!"); }
let mut hello = String::from("Hello, ");

hello.push('w');
hello.push_str("orld!");

If you have a vector of UTF-8 bytes, you can create a String from it with the from_utf8() method:

fn main() { // some bytes, in a vector let sparkle_heart = vec![240, 159, 146, 150]; // We know these bytes are valid, so we'll use `unwrap()`. let sparkle_heart = String::from_utf8(sparkle_heart).unwrap(); assert_eq!("💖", sparkle_heart); }
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();

assert_eq!("💖", sparkle_heart);

UTF-8

Strings are always valid UTF-8. This has a few implications, the first of which is that if you need a non-UTF-8 string, consider OsString. It is similar, but without the UTF-8 constraint. The second implication is that you cannot index into a String:

fn main() { let s = "hello"; println!("The first letter of s is {}", s[0]); // ERROR!!! }
let s = "hello";

println!("The first letter of s is {}", s[0]); // ERROR!!!

Indexing is intended to be a constant-time operation, but UTF-8 encoding does not allow us to do this. Furtheremore, it's not clear what sort of thing the index should return: a byte, a codepoint, or a grapheme cluster. The as_bytes() and chars() methods return iterators over the first two, respectively.

Deref

Strings implement Deref<Target=str>, and so inherit all of str's methods. In addition, this means that you can pass a String to any function which takes a &str by using an ampersand (&):

fn main() { fn takes_str(s: &str) { } let s = String::from("Hello"); takes_str(&s); }
fn takes_str(s: &str) { }

let s = String::from("Hello");

takes_str(&s);

This will create a &str from the String and pass it in. This conversion is very inexpensive, and so generally, functions will accept &strs as arguments unless they need a String for some specific reason.

Representation

A String is made up of three components: a pointer to some bytes, a length, and a capacity. The pointer points to an internal buffer String uses to store its data. The length is the number of bytes currently stored in the buffer, and the capacity is the size of the buffer in bytes. As such, the length will always be less than or equal to the capacity.

This buffer is always stored on the heap.

You can look at these with the as_ptr(), [len()], and [capacity()] methods:

fn main() { use std::mem; let story = String::from("Once upon a time..."); let ptr = story.as_ptr(); let len = story.len(); let capacity = story.capacity(); // story has thirteen bytes assert_eq!(19, len); // Now that we have our parts, we throw the story away. mem::forget(story); // We can re-build a String out of ptr, len, and capacity. This is all // unsafe becuase we are responsible for making sure the components are // valid: let s = unsafe { String::from_raw_parts(ptr as *mut _, len, capacity) } ; assert_eq!(String::from("Once upon a time..."), s); }
use std::mem;

let story = String::from("Once upon a time...");

let ptr = story.as_ptr();
let len = story.len();
let capacity = story.capacity();

// story has thirteen bytes
assert_eq!(19, len);

// Now that we have our parts, we throw the story away.
mem::forget(story);

// We can re-build a String out of ptr, len, and capacity. This is all
// unsafe becuase we are responsible for making sure the components are
// valid:
let s = unsafe { String::from_raw_parts(ptr as *mut _, len, capacity) } ;

assert_eq!(String::from("Once upon a time..."), s);

[len()]: # method.len [capacity()]: # method.capacity

If a String has enough capacity, adding elements to it will not re-allocate. For example, consider this program:

fn main() { let mut s = String::new(); println!("{}", s.capacity()); for _ in 0..5 { s.push_str("hello"); println!("{}", s.capacity()); } }
let mut s = String::new();

println!("{}", s.capacity());

for _ in 0..5 {
    s.push_str("hello");
    println!("{}", s.capacity());
}

This will output the following:

0
5
10
20
20
40

At first, we have no memory allocated at all, but as we append to the string, it increases its capacity appropriately. If we instead use the with_capacity() method to allocate the correct capacity initially:

fn main() { let mut s = String::with_capacity(25); println!("{}", s.capacity()); for _ in 0..5 { s.push_str("hello"); println!("{}", s.capacity()); } }
let mut s = String::with_capacity(25);

println!("{}", s.capacity());

for _ in 0..5 {
    s.push_str("hello");
    println!("{}", s.capacity());
}

We end up with a different output:

25
25
25
25
25
25

Here, there's no need to allocate more memory inside the loop.

Methods

impl String

fn new() -> String

Creates a new string buffer initialized with the empty string.

Examples

fn main() { #![allow(unused_mut)] let mut s = String::new(); }
let mut s = String::new();

fn with_capacity(capacity: usize) -> String

Creates a new string buffer with the given capacity. The string will be able to hold exactly capacity bytes without reallocating. If capacity is 0, the string will not allocate.

Examples

fn main() { let mut s = String::with_capacity(10); // The String contains no chars, even though it has capacity for more assert_eq!(s.len(), 0); // These are all done without reallocating... let cap = s.capacity(); for i in 0..10 { s.push('a'); } assert_eq!(s.capacity(), cap); // ...but this may make the vector reallocate s.push('a'); }
let mut s = String::with_capacity(10);

// The String contains no chars, even though it has capacity for more
assert_eq!(s.len(), 0);

// These are all done without reallocating...
let cap = s.capacity();
for i in 0..10 {
    s.push('a');
}

assert_eq!(s.capacity(), cap);

// ...but this may make the vector reallocate
s.push('a');

fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error>

Converts a vector of bytes to a String.

A string slice (&str) is made of bytes (u8), and a vector of bytes (Vec<u8>) is made of bytes, so this function converts between the two. Not all byte slices are valid Strings, however: String requires that it is valid UTF-8. from_utf8() checks to ensure that the bytes are valid UTF-8, and then does the conversion.

If you are sure that the byte slice is valid UTF-8, and you don't want to incur the overhead of the validity check, there is an unsafe version of this function, from_utf8_unchecked(), which has the same behavior but skips the check.

This method will take care to not copy the vector, for efficiency's sake.

If you need a &str instead of a String, consider str::from_utf8().

Failure

Returns Err if the slice is not UTF-8 with a description as to why the provided bytes are not UTF-8. The vector you moved in is also included.

Examples

Basic usage:

fn main() { // some bytes, in a vector let sparkle_heart = vec![240, 159, 146, 150]; // We know these bytes are valid, so we'll use `unwrap()`. let sparkle_heart = String::from_utf8(sparkle_heart).unwrap(); assert_eq!("💖", sparkle_heart); }
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();

assert_eq!("💖", sparkle_heart);

Incorrect bytes:

fn main() { // some invalid bytes, in a vector let sparkle_heart = vec![0, 159, 146, 150]; assert!(String::from_utf8(sparkle_heart).is_err()); }
// some invalid bytes, in a vector
let sparkle_heart = vec![0, 159, 146, 150];

assert!(String::from_utf8(sparkle_heart).is_err());

See the docs for FromUtf8Error for more details on what you can do with this error.

fn from_utf8_lossy(v: &'a [u8]) -> Cow<'a, str>

Converts a slice of bytes to a String, including invalid characters.

A string slice (&str) is made of bytes (u8), and a slice of bytes (&[u8]) is made of bytes, so this function converts between the two. Not all byte slices are valid string slices, however: &str requires that it is valid UTF-8. During this conversion, from_utf8_lossy() will replace any invalid UTF-8 sequences with U+FFFD REPLACEMENT CHARACTER, which looks like this: �

If you are sure that the byte slice is valid UTF-8, and you don't want to incur the overhead of the conversion, there is an unsafe version of this function, from_utf8_unchecked(), which has the same behavior but skips the checks.

If you need a &str instead of a String, consider str::from_utf8().

Examples

Basic usage:

fn main() { // some bytes, in a vector let sparkle_heart = vec![240, 159, 146, 150]; // We know these bytes are valid, so we'll use `unwrap()`. let sparkle_heart = String::from_utf8(sparkle_heart).unwrap(); assert_eq!("💖", sparkle_heart); }
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();

assert_eq!("💖", sparkle_heart);

Incorrect bytes:

fn main() { // some invalid bytes let input = b"Hello \xF0\x90\x80World"; let output = String::from_utf8_lossy(input); assert_eq!("Hello �World", output); }
// some invalid bytes
let input = b"Hello \xF0\x90\x80World";
let output = String::from_utf8_lossy(input);

assert_eq!("Hello �World", output);

fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error>

Decode a UTF-16 encoded vector v into a String, returning None if v contains any invalid data.

Examples

fn main() { // 𝄞music let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0x0069, 0x0063]; assert_eq!(String::from_utf16(v).unwrap(), "𝄞music".to_string()); // 𝄞mu<invalid>ic let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, 0xD800, 0x0069, 0x0063]; assert!(String::from_utf16(v).is_err()); }
// 𝄞music
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
          0x0073, 0x0069, 0x0063];
assert_eq!(String::from_utf16(v).unwrap(),
           "𝄞music".to_string());

// 𝄞mu<invalid>ic
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
          0xD800, 0x0069, 0x0063];
assert!(String::from_utf16(v).is_err());

fn from_utf16_lossy(v: &[u16]) -> String

Decode a UTF-16 encoded vector v into a string, replacing invalid data with the replacement character (U+FFFD).

Examples

fn main() { // 𝄞mus<invalid>ic<invalid> let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0xDD1E, 0x0069, 0x0063, 0xD834]; assert_eq!(String::from_utf16_lossy(v), "𝄞mus\u{FFFD}ic\u{FFFD}".to_string()); }
// 𝄞mus<invalid>ic<invalid>
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
          0x0073, 0xDD1E, 0x0069, 0x0063,
          0xD834];

assert_eq!(String::from_utf16_lossy(v),
           "𝄞mus\u{FFFD}ic\u{FFFD}".to_string());

unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String

Creates a new String from a length, capacity, and pointer.

Safety

This is very unsafe because:

  • We call Vec::from_raw_parts to get a Vec<u8>. Therefore, this function inherits all of its unsafety, see its documentation for the invariants it expects, they also apply to this function.
  • We assume that the Vec contains valid UTF-8.

unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String

Converts a vector of bytes to a String without checking that the string contains valid UTF-8.

See the safe version, from_utf8(), for more.

Safety

This function is unsafe because it does not check that the bytes passed to it are valid UTF-8. If this constraint is violated, undefined behavior results, as the rest of Rust assumes that Strings are valid UTF-8.

Examples

Basic usage:

fn main() { // some bytes, in a vector let sparkle_heart = vec![240, 159, 146, 150]; let sparkle_heart = unsafe { String::from_utf8_unchecked(sparkle_heart) }; assert_eq!("💖", sparkle_heart); }
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

let sparkle_heart = unsafe {
    String::from_utf8_unchecked(sparkle_heart)
};

assert_eq!("💖", sparkle_heart);

fn into_bytes(self) -> Vec<u8>

Returns the underlying byte buffer, encoded as UTF-8.

Examples

fn main() { let s = String::from("hello"); let bytes = s.into_bytes(); assert_eq!(bytes, [104, 101, 108, 108, 111]); }
let s = String::from("hello");
let bytes = s.into_bytes();
assert_eq!(bytes, [104, 101, 108, 108, 111]);

fn as_str(&self) -> &str

Unstable (convert #27729)

: waiting on RFC revision

Extracts a string slice containing the entire string.

fn push_str(&mut self, string: &str)

Pushes the given string onto this string buffer.

Examples

fn main() { let mut s = String::from("foo"); s.push_str("bar"); assert_eq!(s, "foobar"); }
let mut s = String::from("foo");
s.push_str("bar");
assert_eq!(s, "foobar");

fn capacity(&self) -> usize

Returns the number of bytes that this string buffer can hold without reallocating.

Examples

fn main() { let s = String::with_capacity(10); assert!(s.capacity() >= 10); }
let s = String::with_capacity(10);
assert!(s.capacity() >= 10);

fn reserve(&mut self, additional: usize)

Reserves capacity for at least additional more bytes to be inserted in the given String. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new capacity overflows usize.

Examples

fn main() { let mut s = String::new(); s.reserve(10); assert!(s.capacity() >= 10); }
let mut s = String::new();
s.reserve(10);
assert!(s.capacity() >= 10);

fn reserve_exact(&mut self, additional: usize)

Reserves the minimum capacity for exactly additional more bytes to be inserted in the given String. Does nothing if the capacity is already sufficient.

Note that the allocator may give the collection more space than it requests. Therefore capacity can not be relied upon to be precisely minimal. Prefer reserve if future insertions are expected.

Panics

Panics if the new capacity overflows usize.

Examples

fn main() { let mut s = String::new(); s.reserve_exact(10); assert!(s.capacity() >= 10); }
let mut s = String::new();
s.reserve_exact(10);
assert!(s.capacity() >= 10);

fn shrink_to_fit(&mut self)

Shrinks the capacity of this string buffer to match its length.

Examples

fn main() { let mut s = String::from("foo"); s.reserve(100); assert!(s.capacity() >= 100); s.shrink_to_fit(); assert_eq!(s.capacity(), 3); }
let mut s = String::from("foo");
s.reserve(100);
assert!(s.capacity() >= 100);
s.shrink_to_fit();
assert_eq!(s.capacity(), 3);

fn push(&mut self, ch: char)

Adds the given character to the end of the string.

Examples

fn main() { let mut s = String::from("abc"); s.push('1'); s.push('2'); s.push('3'); assert_eq!(s, "abc123"); }
let mut s = String::from("abc");
s.push('1');
s.push('2');
s.push('3');
assert_eq!(s, "abc123");

fn as_bytes(&self) -> &[u8]

Works with the underlying buffer as a byte slice.

Examples

fn main() { let s = String::from("hello"); assert_eq!(s.as_bytes(), [104, 101, 108, 108, 111]); }
let s = String::from("hello");
assert_eq!(s.as_bytes(), [104, 101, 108, 108, 111]);

fn truncate(&mut self, new_len: usize)

Shortens a string to the specified length.

Panics

Panics if new_len > current length, or if new_len is not a character boundary.

Examples

fn main() { let mut s = String::from("hello"); s.truncate(2); assert_eq!(s, "he"); }
let mut s = String::from("hello");
s.truncate(2);
assert_eq!(s, "he");

fn pop(&mut self) -> Option<char>

Removes the last character from the string buffer and returns it. Returns None if this string buffer is empty.

Examples

fn main() { let mut s = String::from("foo"); assert_eq!(s.pop(), Some('o')); assert_eq!(s.pop(), Some('o')); assert_eq!(s.pop(), Some('f')); assert_eq!(s.pop(), None); }
let mut s = String::from("foo");
assert_eq!(s.pop(), Some('o'));
assert_eq!(s.pop(), Some('o'));
assert_eq!(s.pop(), Some('f'));
assert_eq!(s.pop(), None);

fn remove(&mut self, idx: usize) -> char

Removes the character from the string buffer at byte position idx and returns it.

Warning

This is an O(n) operation as it requires copying every element in the buffer.

Panics

If idx does not lie on a character boundary, or if it is out of bounds, then this function will panic.

Examples

fn main() { let mut s = String::from("foo"); assert_eq!(s.remove(0), 'f'); assert_eq!(s.remove(1), 'o'); assert_eq!(s.remove(0), 'o'); }
let mut s = String::from("foo");
assert_eq!(s.remove(0), 'f');
assert_eq!(s.remove(1), 'o');
assert_eq!(s.remove(0), 'o');

fn insert(&mut self, idx: usize, ch: char)

Inserts a character into the string buffer at byte position idx.

Warning

This is an O(n) operation as it requires copying every element in the buffer.

Panics

If idx does not lie on a character boundary or is out of bounds, then this function will panic.

unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8>

Views the string buffer as a mutable sequence of bytes.

This is unsafe because it does not check to ensure that the resulting string will be valid UTF-8.

Examples

fn main() { let mut s = String::from("hello"); unsafe { let vec = s.as_mut_vec(); assert!(vec == &[104, 101, 108, 108, 111]); vec.reverse(); } assert_eq!(s, "olleh"); }
let mut s = String::from("hello");
unsafe {
    let vec = s.as_mut_vec();
    assert!(vec == &[104, 101, 108, 108, 111]);
    vec.reverse();
}
assert_eq!(s, "olleh");

fn len(&self) -> usize

Returns the number of bytes in this string.

Examples

fn main() { let a = "foo".to_string(); assert_eq!(a.len(), 3); }
let a = "foo".to_string();
assert_eq!(a.len(), 3);

fn is_empty(&self) -> bool

Returns true if the string contains no bytes

Examples

fn main() { let mut v = String::new(); assert!(v.is_empty()); v.push('a'); assert!(!v.is_empty()); }
let mut v = String::new();
assert!(v.is_empty());
v.push('a');
assert!(!v.is_empty());

fn clear(&mut self)

Truncates the string, returning it to 0 length.

Examples

fn main() { let mut s = "foo".to_string(); s.clear(); assert!(s.is_empty()); }
let mut s = "foo".to_string();
s.clear();
assert!(s.is_empty());

fn drain<R>(&mut self, range: R) -> Drain where R: RangeArgument<usize>

Create a draining iterator that removes the specified range in the string and yields the removed chars from start to end. The element range is removed even if the iterator is not consumed until the end.

Panics

Panics if the starting point or end point are not on character boundaries, or if they are out of bounds.

Examples

fn main() { let mut s = String::from("α is alpha, β is beta"); let beta_offset = s.find('β').unwrap_or(s.len()); // Remove the range up until the β from the string let t: String = s.drain(..beta_offset).collect(); assert_eq!(t, "α is alpha, "); assert_eq!(s, "β is beta"); // A full range clears the string s.drain(..); assert_eq!(s, ""); }
let mut s = String::from("α is alpha, β is beta");
let beta_offset = s.find('β').unwrap_or(s.len());

// Remove the range up until the β from the string
let t: String = s.drain(..beta_offset).collect();
assert_eq!(t, "α is alpha, ");
assert_eq!(s, "β is beta");

// A full range clears the string
s.drain(..);
assert_eq!(s, "");

fn into_boxed_str(self) -> Box<str>

Converts the string into Box<str>.

Note that this will drop any excess capacity.

fn into_boxed_slice(self) -> Box<str>

Deprecated since 1.4.0

: renamed to into_boxed_str

Converts the string into Box<str>.

Note that this will drop any excess capacity.

Methods from Deref<Target=str>

fn len(&self) -> usize

Returns the length of self.

This length is in bytes, not chars or graphemes. In other words, it may not be what a human considers the length of the string.

Examples

Basic usage:

fn main() { let len = "foo".len(); assert_eq!(3, len); let len = "ƒoo".len(); // fancy f! assert_eq!(4, len); }
let len = "foo".len();
assert_eq!(3, len);

let len = "ƒoo".len(); // fancy f!
assert_eq!(4, len);

fn is_empty(&self) -> bool

Returns true if this slice has a length of zero bytes.

Examples

Basic usage:

fn main() { let s = ""; assert!(s.is_empty()); let s = "not empty"; assert!(!s.is_empty()); }
let s = "";
assert!(s.is_empty());

let s = "not empty";
assert!(!s.is_empty());

fn is_char_boundary(&self, index: usize) -> bool

Unstable (str_char #27754)

: it is unclear whether this method pulls its weight with the existence of the char_indices iterator or this method may want to be replaced with checked slicing

Checks that index-th byte lies at the start and/or end of a UTF-8 code point sequence.

The start and end of the string (when index == self.len()) are considered to be boundaries.

Returns false if index is greater than self.len().

Examples

#![feature(str_char)] fn main() { let s = "Löwe 老虎 Léopard"; assert!(s.is_char_boundary(0)); // start of `老` assert!(s.is_char_boundary(6)); assert!(s.is_char_boundary(s.len())); // second byte of `ö` assert!(!s.is_char_boundary(2)); // third byte of `老` assert!(!s.is_char_boundary(8)); }
#![feature(str_char)]

let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));

// second byte of `ö`
assert!(!s.is_char_boundary(2));

// third byte of `老`
assert!(!s.is_char_boundary(8));

fn as_bytes(&self) -> &[u8]

Converts a string slice to a byte slice.

Examples

Basic usage:

fn main() { let bytes = "bors".as_bytes(); assert_eq!(b"bors", bytes); }
let bytes = "bors".as_bytes();
assert_eq!(b"bors", bytes);

fn as_ptr(&self) -> *const u8

Converts a string slice to a raw pointer.

As string slices are a slice of bytes, the raw pointer points to a u8. This pointer will be pointing to the first byte of the string slice.

Examples

Basic usage:

fn main() { let s = "Hello"; let ptr = s.as_ptr(); }
let s = "Hello";
let ptr = s.as_ptr();

unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str

Creates a string slice from another string slice, bypassing safety checks.

This new slice goes from begin to end, including begin but excluding end.

To get a mutable string slice instead, see the slice_mut_unchecked() method.

Safety

Callers of this function are responsible that three preconditions are satisifed:

  • begin must come before end.
  • begin and end must be bye positions within the string slice.
  • begin and end must lie on UTF-8 sequence boundaries.

Examples

Basic usage:

fn main() { let s = "Löwe 老虎 Léopard"; unsafe { assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21)); } let s = "Hello, world!"; unsafe { assert_eq!("world", s.slice_unchecked(7, 12)); } }
let s = "Löwe 老虎 Léopard";

unsafe {
    assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}

let s = "Hello, world!";

unsafe {
    assert_eq!("world", s.slice_unchecked(7, 12));
}

unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str

Creates a string slice from another string slice, bypassing safety checks.

This new slice goes from begin to end, including begin but excluding end.

To get an immutable string slice instead, see the slice_unchecked() method.

Safety

Callers of this function are responsible that three preconditions are satisifed:

  • begin must come before end.
  • begin and end must be bye positions within the string slice.
  • begin and end must lie on UTF-8 sequence boundaries.

fn char_range_at(&self, start: usize) -> CharRange

Unstable (str_char #27754)

: often replaced by char_indices, this method may be removed in favor of just char_at() or eventually removed altogether

Given a byte position, returns the next char and its index.

Panics

If i is greater than or equal to the length of the string. If i is not the index of the beginning of a valid UTF-8 sequence.

Examples

This example manually iterates through the code points of a string; this should normally be done by .chars() or .char_indices().

#![feature(str_char)] fn main() { use std::str::CharRange; let s = "中华Việt Nam"; let mut i = 0; while i < s.len() { let CharRange {ch, next} = s.char_range_at(i); println!("{}: {}", i, ch); i = next; } }
#![feature(str_char)]

use std::str::CharRange;

let s = "中华Việt Nam";
let mut i = 0;
while i < s.len() {
    let CharRange {ch, next} = s.char_range_at(i);
    println!("{}: {}", i, ch);
    i = next;
}

This outputs:

0: 中
3: 华
6: V
7: i
8: e
9:
11:
13: t
14:
15: N
16: a
17: m

fn char_range_at_reverse(&self, start: usize) -> CharRange

Unstable (str_char #27754)

: often replaced by char_indices, this method may be removed in favor of just char_at_reverse() or eventually removed altogether

Given a byte position, returns the previous char and its position.

Note that Unicode has many features, such as combining marks, ligatures, and direction marks, that need to be taken into account to correctly reverse a string.

Returns 0 for next index if called on start index 0.

Panics

If i is greater than the length of the string. If i is not an index following a valid UTF-8 sequence.

Examples

This example manually iterates through the code points of a string; this should normally be done by .chars().rev() or .char_indices().

#![feature(str_char)] fn main() { use std::str::CharRange; let s = "中华Việt Nam"; let mut i = s.len(); while i > 0 { let CharRange {ch, next} = s.char_range_at_reverse(i); println!("{}: {}", i, ch); i = next; } }
#![feature(str_char)]

use std::str::CharRange;

let s = "中华Việt Nam";
let mut i = s.len();
while i > 0 {
    let CharRange {ch, next} = s.char_range_at_reverse(i);
    println!("{}: {}", i, ch);
    i = next;
}

This outputs:

18: m
17: a
16: N
15:
14: t
13:
11:
9: e
8: i
7: V
6: 华
3: 中

fn char_at(&self, i: usize) -> char

Unstable (str_char #27754)

: frequently replaced by the chars() iterator, this method may be removed or possibly renamed in the future; it is normally replaced by chars/char_indices iterators or by getting the first char from a subslice

Given a byte position, returns the char at that position.

Panics

If i is greater than or equal to the length of the string. If i is not the index of the beginning of a valid UTF-8 sequence.

Examples

#![feature(str_char)] fn main() { let s = "abπc"; assert_eq!(s.char_at(1), 'b'); assert_eq!(s.char_at(2), 'π'); assert_eq!(s.char_at(4), 'c'); }
#![feature(str_char)]

let s = "abπc";
assert_eq!(s.char_at(1), 'b');
assert_eq!(s.char_at(2), 'π');
assert_eq!(s.char_at(4), 'c');

fn char_at_reverse(&self, i: usize) -> char

Unstable (str_char #27754)

: see char_at for more details, but reverse semantics are also somewhat unclear, especially with which cases generate panics

Given a byte position, returns the char at that position, counting from the end.

Panics

If i is greater than the length of the string. If i is not an index following a valid UTF-8 sequence.

Examples

#![feature(str_char)] fn main() { let s = "abπc"; assert_eq!(s.char_at_reverse(1), 'a'); assert_eq!(s.char_at_reverse(2), 'b'); assert_eq!(s.char_at_reverse(3), 'π'); }
#![feature(str_char)]

let s = "abπc";
assert_eq!(s.char_at_reverse(1), 'a');
assert_eq!(s.char_at_reverse(2), 'b');
assert_eq!(s.char_at_reverse(3), 'π');

fn slice_shift_char(&self) -> Option<(char, &str)>

Unstable (str_char #27754)

: awaiting conventions about shifting and slices and may not be warranted with the existence of the chars and/or char_indices iterators

Retrieves the first char from a &str and returns it.

Note that a single Unicode character (grapheme cluster) can be composed of multiple chars.

This does not allocate a new string; instead, it returns a slice that points one code point beyond the code point that was shifted.

None is returned if the slice is empty.

Examples

#![feature(str_char)] fn main() { let s = "Łódź"; // \u{141}o\u{301}dz\u{301} let (c, s1) = s.slice_shift_char().unwrap(); assert_eq!(c, 'Ł'); assert_eq!(s1, "ódź"); let (c, s2) = s1.slice_shift_char().unwrap(); assert_eq!(c, 'o'); assert_eq!(s2, "\u{301}dz\u{301}"); }
#![feature(str_char)]

let s = "Łódź"; // \u{141}o\u{301}dz\u{301}
let (c, s1) = s.slice_shift_char().unwrap();

assert_eq!(c, 'Ł');
assert_eq!(s1, "ódź");

let (c, s2) = s1.slice_shift_char().unwrap();

assert_eq!(c, 'o');
assert_eq!(s2, "\u{301}dz\u{301}");

fn split_at(&self, mid: usize) -> (&str, &str)

Divide one string slice into two at an index.

The argument, mid, should be a byte offset from the start of the string. It must also be on the boundary of a UTF-8 code point.

The two slices returned go from the start of the string slice to mid, and from mid to the end of the string slice.

To get mutable string slices instead, see the split_at_mut() method.

Panics

Panics if mid is not on a UTF-8 code point boundary, or if it is beyond the last code point of the string slice.

Examples

Basic usage:

fn main() { let s = "Per Martin-Löf"; let (first, last) = s.split_at(3); assert_eq!("Per", first); assert_eq!(" Martin-Löf", last); }
let s = "Per Martin-Löf";

let (first, last) = s.split_at(3);

assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);

fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str)

Divide one mutable string slice into two at an index.

The argument, mid, should be a byte offset from the start of the string. It must also be on the boundary of a UTF-8 code point.

The two slices returned go from the start of the string slice to mid, and from mid to the end of the string slice.

To get immutable string slices instead, see the split_at() method.

Panics

Panics if mid is not on a UTF-8 code point boundary, or if it is beyond the last code point of the string slice.

Examples

Basic usage:

fn main() { let s = "Per Martin-Löf"; let (first, last) = s.split_at(3); assert_eq!("Per", first); assert_eq!(" Martin-Löf", last); }
let s = "Per Martin-Löf";

let (first, last) = s.split_at(3);

assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);

fn chars(&self) -> Chars

Returns an iterator over the chars of a string slice.

As a string slice consists of valid UTF-8, we can iterate through a string slice by char. This method returns such an iterator.

It's important to remember that char represents a Unicode Scalar Value, and may not match your idea of what a 'character' is. Iteration over grapheme clusters may be what you actually want.

Examples

Basic usage:

fn main() { let word = "goodbye"; let count = word.chars().count(); assert_eq!(7, count); let mut chars = word.chars(); assert_eq!(Some('g'), chars.next()); assert_eq!(Some('o'), chars.next()); assert_eq!(Some('o'), chars.next()); assert_eq!(Some('d'), chars.next()); assert_eq!(Some('b'), chars.next()); assert_eq!(Some('y'), chars.next()); assert_eq!(Some('e'), chars.next()); assert_eq!(None, chars.next()); }
let word = "goodbye";

let count = word.chars().count();
assert_eq!(7, count);

let mut chars = word.chars();

assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());

assert_eq!(None, chars.next());

Remember, chars may not match your human intuition about characters:

fn main() { let y = "y̆"; let mut chars = y.chars(); assert_eq!(Some('y'), chars.next()); // not 'y̆' assert_eq!(Some('\u{0306}'), chars.next()); assert_eq!(None, chars.next()); }
let y = "y̆";

let mut chars = y.chars();

assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());

assert_eq!(None, chars.next());

fn char_indices(&self) -> CharIndices

Returns an iterator over the chars of a string slice, and their positions.

As a string slice consists of valid UTF-8, we can iterate through a string slice by char. This method returns an iterator of both these chars, as well as their byte positions.

The iterator yields tuples. The position is first, the char is second.

Examples

Basic usage:

fn main() { let word = "goodbye"; let count = word.char_indices().count(); assert_eq!(7, count); let mut char_indices = word.char_indices(); assert_eq!(Some((0, 'g')), char_indices.next()); assert_eq!(Some((1, 'o')), char_indices.next()); assert_eq!(Some((2, 'o')), char_indices.next()); assert_eq!(Some((3, 'd')), char_indices.next()); assert_eq!(Some((4, 'b')), char_indices.next()); assert_eq!(Some((5, 'y')), char_indices.next()); assert_eq!(Some((6, 'e')), char_indices.next()); assert_eq!(None, char_indices.next()); }
let word = "goodbye";

let count = word.char_indices().count();
assert_eq!(7, count);

let mut char_indices = word.char_indices();

assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());

assert_eq!(None, char_indices.next());

Remember, chars may not match your human intuition about characters:

fn main() { let y = "y̆"; let mut char_indices = y.char_indices(); assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆') assert_eq!(Some((1, '\u{0306}')), char_indices.next()); assert_eq!(None, char_indices.next()); }
let y = "y̆";

let mut char_indices = y.char_indices();

assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());

assert_eq!(None, char_indices.next());

fn bytes(&self) -> Bytes

An iterator over the bytes of a string slice.

As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.

Examples

Basic usage:

fn main() { let mut bytes = "bors".bytes(); assert_eq!(Some(b'b'), bytes.next()); assert_eq!(Some(b'o'), bytes.next()); assert_eq!(Some(b'r'), bytes.next()); assert_eq!(Some(b's'), bytes.next()); assert_eq!(None, bytes.next()); }
let mut bytes = "bors".bytes();

assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());

assert_eq!(None, bytes.next());

fn split_whitespace(&self) -> SplitWhitespace

Split a string slice by whitespace.

The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Examples

Basic usage:

fn main() { let mut iter = "A few words".split_whitespace(); assert_eq!(Some("A"), iter.next()); assert_eq!(Some("few"), iter.next()); assert_eq!(Some("words"), iter.next()); assert_eq!(None, iter.next()); }
let mut iter = "A few words".split_whitespace();

assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());

assert_eq!(None, iter.next());

All kinds of whitespace are considered:

fn main() { let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace(); assert_eq!(Some("Mary"), iter.next()); assert_eq!(Some("had"), iter.next()); assert_eq!(Some("a"), iter.next()); assert_eq!(Some("little"), iter.next()); assert_eq!(Some("lamb"), iter.next()); assert_eq!(None, iter.next()); }
let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());

assert_eq!(None, iter.next());

fn lines(&self) -> Lines

An iterator over the lines of a string, as string slices.

Lines are ended with either a newline (\n) or a carriage return with a line feed (\r\n).

The final line ending is optional.

Examples

Basic usage:

fn main() { let text = "foo\r\nbar\n\nbaz\n"; let mut lines = text.lines(); assert_eq!(Some("foo"), lines.next()); assert_eq!(Some("bar"), lines.next()); assert_eq!(Some(""), lines.next()); assert_eq!(Some("baz"), lines.next()); assert_eq!(None, lines.next()); }
let text = "foo\r\nbar\n\nbaz\n";
let mut lines = text.lines();

assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());

assert_eq!(None, lines.next());

The final line ending isn't required:

fn main() { let text = "foo\nbar\n\r\nbaz"; let mut lines = text.lines(); assert_eq!(Some("foo"), lines.next()); assert_eq!(Some("bar"), lines.next()); assert_eq!(Some(""), lines.next()); assert_eq!(Some("baz"), lines.next()); assert_eq!(None, lines.next()); }
let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();

assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());

assert_eq!(None, lines.next());

fn lines_any(&self) -> LinesAny

Deprecated since 1.4.0

: use lines() instead now

An iterator over the lines of a string.

fn utf16_units(&self) -> Utf16Units

Unstable (str_utf16 #27714)

: this functionality may only be provided by libunicode

Returns an iterator of u16 over the string encoded as UTF-16.

fn contains<'a, P>(&'a self, pat: P) -> bool where P: Pattern<'a>

Returns true if the given &str is a sub-slice of this string slice.

Returns false if it's not.

Examples

Basic usage:

fn main() { let bananas = "bananas"; assert!(bananas.contains("nana")); assert!(!bananas.contains("apples")); }
let bananas = "bananas";

assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));

fn starts_with<'a, P>(&'a self, pat: P) -> bool where P: Pattern<'a>

Returns true if the given &str is a prefix of this string slice.

Returns false if it's not.

Examples

Basic usage:

fn main() { let bananas = "bananas"; assert!(bananas.starts_with("bana")); assert!(!bananas.starts_with("nana")); }
let bananas = "bananas";

assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));

fn ends_with<'a, P>(&'a self, pat: P) -> bool where P: Pattern<'a>, P::Searcher: ReverseSearcher<'a>

Returns true if the given &str is a suffix of this string slice.

Returns false if not.

Examples

Basic usage:

fn main() { let bananas = "bananas"; assert!(bananas.ends_with("anas")); assert!(!bananas.ends_with("nana")); }
let bananas = "bananas";

assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));

fn find<'a, P>(&'a self, pat: P) -> Option<usize> where P: Pattern<'a>

Returns the byte index of the first character of this string slice that matches the pattern.

Returns None if the pattern doesn't match.

The pattern can be a &str, char, or a closure that determines if a character matches.

Examples

Simple patterns:

fn main() { let s = "Löwe 老虎 Léopard"; assert_eq!(s.find('L'), Some(0)); assert_eq!(s.find('é'), Some(14)); assert_eq!(s.find("Léopard"), Some(13)); }
let s = "Löwe 老虎 Léopard";

assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("Léopard"), Some(13));

More complex patterns with closures:

fn main() { let s = "Löwe 老虎 Léopard"; assert_eq!(s.find(char::is_whitespace), Some(5)); assert_eq!(s.find(char::is_lowercase), Some(1)); }
let s = "Löwe 老虎 Léopard";

assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));

Not finding the pattern:

fn main() { let s = "Löwe 老虎 Léopard"; let x: &[_] = &['1', '2']; assert_eq!(s.find(x), None); }
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];

assert_eq!(s.find(x), None);

fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> where P: Pattern<'a>, P::Searcher: ReverseSearcher<'a>

Returns the byte index of the last character of this string slice that matches the pattern.

Returns None if the pattern doesn't match.

The pattern can be a &str, char, or a closure that determines if a character matches.

Examples

Simple patterns:

fn main() { let s = "Löwe 老虎 Léopard"; assert_eq!(s.rfind('L'), Some(13)); assert_eq!(s.rfind('é'), Some(14)); }
let s = "Löwe 老虎 Léopard";

assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));

More complex patterns with closures:

fn main() { let s = "Löwe 老虎 Léopard"; assert_eq!(s.rfind(char::is_whitespace), Some(12)); assert_eq!(s.rfind(char::is_lowercase), Some(20)); }
let s = "Löwe 老虎 Léopard";

assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));

Not finding the pattern:

fn main() { let s = "Löwe 老虎 Léopard"; let x: &[_] = &['1', '2']; assert_eq!(s.rfind(x), None); }
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];

assert_eq!(s.rfind(x), None);

fn split<'a, P>(&'a self, pat: P) -> Split<'a, P> where P: Pattern<'a>

An iterator over substrings of this string slice, separated by characters matched by a pattern.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rsplit() method can be used.

Examples

Simple patterns:

fn main() { let v: Vec<&str> = "Mary had a little lamb".split(' ').collect(); assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]); let v: Vec<&str> = "".split('X').collect(); assert_eq!(v, [""]); let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect(); assert_eq!(v, ["lion", "", "tiger", "leopard"]); let v: Vec<&str> = "lion::tiger::leopard".split("::").collect(); assert_eq!(v, ["lion", "tiger", "leopard"]); let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect(); assert_eq!(v, ["abc", "def", "ghi"]); let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect(); assert_eq!(v, ["lion", "tiger", "leopard"]); }
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);

let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);

let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);

let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);

let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);

let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);

A more complex pattern, using a closure:

fn main() { let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect(); assert_eq!(v, ["abc", "def", "ghi"]); }
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);

If a string contains multiple contiguous separators, you will end up with empty strings in the output:

fn main() { let x = "||||a||b|c".to_string(); let d: Vec<_> = x.split('|').collect(); assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); }
let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();

assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);

This can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:

fn main() { let x = " a b c".to_string(); let d: Vec<_> = x.split(' ').collect(); assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); }
let x = "    a  b c".to_string();
let d: Vec<_> = x.split(' ').collect();

assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);

It does not give you:

fn main() { assert_eq!(d, &["a", "b", "c"]); }
assert_eq!(d, &["a", "b", "c"]);

Use split_whitespace() for this behavior.

fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> where P: Pattern<'a>, P::Searcher: ReverseSearcher<'a>

An iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a DoubleEndedIterator if a forward/reverse search yields the same elements.

For iterating from the front, the split() method can be used.

Examples

Simple patterns:

fn main() { let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect(); assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]); let v: Vec<&str> = "".rsplit('X').collect(); assert_eq!(v, [""]); let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect(); assert_eq!(v, ["leopard", "tiger", "", "lion"]); let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect(); assert_eq!(v, ["leopard", "tiger", "lion"]); }
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);

let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);

let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);

let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);

A more complex pattern, using a closure:

fn main() { let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect(); assert_eq!(v, ["ghi", "def", "abc"]); }
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);

fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P> where P: Pattern<'a>

An iterator over substrings of the given string slice, separated by characters matched by a pattern.

The pattern can be a &str, char, or a closure that determines the split.

Equivalent to split(), except that the trailing substring is skipped if empty.

This method can be used for string data that is terminated, rather than separated by a pattern.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rsplit_terminator() method can be used.

Examples

Basic usage:

fn main() { let v: Vec<&str> = "A.B.".split_terminator('.').collect(); assert_eq!(v, ["A", "B"]); let v: Vec<&str> = "A..B..".split_terminator(".").collect(); assert_eq!(v, ["A", "", "B", ""]); }
let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);

let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);

fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> where P: Pattern<'a>, P::Searcher: ReverseSearcher<'a>

An iterator over substrings of self, separated by characters matched by a pattern and yielded in reverse order.

The pattern can be a simple &str, char, or a closure that determines the split. Additional libraries might provide more complex patterns like regular expressions.

Equivalent to split, except that the trailing substring is skipped if empty.

This method can be used for string data that is terminated, rather than separated by a pattern.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.

For iterating from the front, the split_terminator() method can be used.

Examples

fn main() { let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect(); assert_eq!(v, ["B", "A"]); let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect(); assert_eq!(v, ["", "B", "", "A"]); }
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);

let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);

fn splitn<'a, P>(&'a self, count: usize, pat: P) -> SplitN<'a, P> where P: Pattern<'a>

An iterator over substrings of the given string slice, separated by a pattern, restricted to returning at most count items.

The last element returned, if any, will contain the remainder of the string slice.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator will not be double ended, because it is not efficient to support.

If the pattern allows a reverse search, the rsplitn() method can be used.

Examples

Simple patterns:

fn main() { let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect(); assert_eq!(v, ["Mary", "had", "a little lambda"]); let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect(); assert_eq!(v, ["lion", "", "tigerXleopard"]); let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect(); assert_eq!(v, ["abcXdef"]); let v: Vec<&str> = "".splitn(1, 'X').collect(); assert_eq!(v, [""]); }
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);

let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);

let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);

let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);

A more complex pattern, using a closure:

fn main() { let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect(); assert_eq!(v, ["abc", "defXghi"]); }
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);

fn rsplitn<'a, P>(&'a self, count: usize, pat: P) -> RSplitN<'a, P> where P: Pattern<'a>, P::Searcher: ReverseSearcher<'a>

An iterator over substrings of this string slice, separated by a pattern, starting from the end of the string, restricted to returning at most count items.

The last element returned, if any, will contain the remainder of the string slice.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator will not be double ended, because it is not efficient to support.

For splitting from the front, the splitn() method can be used.

Examples

Simple patterns:

fn main() { let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect(); assert_eq!(v, ["lamb", "little", "Mary had a"]); let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect(); assert_eq!(v, ["leopard", "tiger", "lionX"]); let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect(); assert_eq!(v, ["leopard", "lion::tiger"]); }
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);

let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);

let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);

A more complex pattern, using a closure:

fn main() { let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect(); assert_eq!(v, ["ghi", "abc1def"]); }
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);

fn matches<'a, P>(&'a self, pat: P) -> Matches<'a, P> where P: Pattern<'a>

An iterator over the matches of a pattern within the given string slice.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rmatches() method can be used.

Examples

Basic usage:

fn main() { let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect(); assert_eq!(v, ["abc", "abc", "abc"]); let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect(); assert_eq!(v, ["1", "2", "3"]); }
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);

let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);

fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> where P: Pattern<'a>, P::Searcher: ReverseSearcher<'a>

An iterator over the matches of a pattern within this string slice, yielded in reverse order.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a DoubleEndedIterator if a forward/reverse search yields the same elements.

For iterating from the front, the [matches()] method can be used.

Examples

Basic usage:

fn main() { let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect(); assert_eq!(v, ["abc", "abc", "abc"]); let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect(); assert_eq!(v, ["3", "2", "1"]); }
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);

let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);

fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P> where P: Pattern<'a>

An iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.

For matches of pat within self that overlap, only the indices corresponding to the first match are returned.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rmatch_indices() method can be used.

Examples

Basic usage:

fn main() { let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect(); assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]); let v: Vec<_> = "1abcabc2".match_indices("abc").collect(); assert_eq!(v, [(1, "abc"), (4, "abc")]); let v: Vec<_> = "ababa".match_indices("aba").collect(); assert_eq!(v, [(0, "aba")]); // only the first `aba` }
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);

let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);

let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`

fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> where P: Pattern<'a>, P::Searcher: ReverseSearcher<'a>

An iterator over the disjoint matches of a pattern within self, yielded in reverse order along with the index of the match.

For matches of pat within self that overlap, only the indices corresponding to the last match are returned.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a [DoubleEndedIterator] if a forward/reverse search yields the same elements.

For iterating from the front, the match_indices() method can be used.

Examples

Basic usage:

fn main() { let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect(); assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]); let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect(); assert_eq!(v, [(4, "abc"), (1, "abc")]); let v: Vec<_> = "ababa".rmatch_indices("aba").collect(); assert_eq!(v, [(2, "aba")]); // only the last `aba` }
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);

let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);

let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`

fn trim(&self) -> &str

Returns a string slice with leading and trailing whitespace removed.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Examples

Basic usage:

fn main() { let s = " Hello\tworld\t"; assert_eq!("Hello\tworld", s.trim()); }
let s = " Hello\tworld\t";

assert_eq!("Hello\tworld", s.trim());

fn trim_left(&self) -> &str

Returns a string slice with leading whitespace removed.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Examples

Basic usage:

fn main() { let s = " Hello\tworld\t"; assert_eq!("Hello\tworld\t", s.trim_left()); }
let s = " Hello\tworld\t";

assert_eq!("Hello\tworld\t", s.trim_left());

fn trim_right(&self) -> &str

Returns a string slice with trailing whitespace removed.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Examples

Basic usage:

fn main() { let s = " Hello\tworld\t"; assert_eq!(" Hello\tworld", s.trim_right()); }
let s = " Hello\tworld\t";

assert_eq!(" Hello\tworld", s.trim_right());

fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where P: Pattern<'a>, P::Searcher: DoubleEndedSearcher<'a>

Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.

The pattern can be a &str, char, or a closure that determines if a character matches.

Examples

Simple patterns:

fn main() { assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_matches(x), "foo1bar"); }
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");

A more complex pattern, using a closure:

fn main() { assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar"); }
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");

fn trim_left_matches<'a, P>(&'a self, pat: P) -> &'a str where P: Pattern<'a>

Returns a string slice with all prefixes that match a pattern repeatedly removed.

The pattern can be a &str, char, or a closure that determines if a character matches.

Examples

Basic usage:

fn main() { assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12"); }
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");

fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where P: Pattern<'a>, P::Searcher: ReverseSearcher<'a>

Returns a string slice with all suffixes that match a pattern repeatedly removed.

The pattern can be a &str, char, or a closure that determines if a character matches.

Examples

Simple patterns:

fn main() { assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar"); }
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");

A more complex pattern, using a closure:

fn main() { assert_eq!("1fooX".trim_left_matches(|c| c == '1' || c == 'X'), "fooX"); }
assert_eq!("1fooX".trim_left_matches(|c| c == '1' || c == 'X'), "fooX");

fn parse<F>(&self) -> Result<F, F::Err> where F: FromStr

Parses this string slice into another type.

Because parse() is so general, it can cause problems with type inference. As such, parse() is one of the few times you'll see the syntax affectionately known as the 'turbofish': ::<>. This helps the inference algorithm understand specifically which type you're trying to parse into.

parse() can parse any type that implements the FromStr trait.

Failure

Will return Err if it's not possible to parse this string slice into the desired type.

Example

Basic usage

fn main() { let four: u32 = "4".parse().unwrap(); assert_eq!(4, four); }
let four: u32 = "4".parse().unwrap();

assert_eq!(4, four);

Using the 'turbofish' instead of annotationg four:

fn main() { let four = "4".parse::<u32>(); assert_eq!(Ok(4), four); }
let four = "4".parse::<u32>();

assert_eq!(Ok(4), four);

Failing to parse:

fn main() { let nope = "j".parse::<u32>(); assert!(nope.is_err()); }
let nope = "j".parse::<u32>();

assert!(nope.is_err());

fn replace(&self, from: &str, to: &str) -> String

Replaces all occurrences of one string with another.

replace creates a new String, and copies the data from this string slice into it. While doing so, it attempts to find a sub-&str. If it finds it, it replaces it with the replacement string slice.

Examples

Basic usage:

fn main() { let s = "this is old"; assert_eq!("this is new", s.replace("old", "new")); }
let s = "this is old";

assert_eq!("this is new", s.replace("old", "new"));

When a &str isn't found:

fn main() { let s = "this is old"; assert_eq!(s, s.replace("cookie monster", "little lamb")); }
let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));

fn to_lowercase(&self) -> String

Returns the lowercase equivalent of this string slice, as a new String.

'Lowercase' is defined according to the terms of the Unicode Derived Core Property Lowercase.

Examples

Basic usage:

fn main() { let s = "HELLO"; assert_eq!("hello", s.to_lowercase()); }
let s = "HELLO";

assert_eq!("hello", s.to_lowercase());

A tricky example, with sigma:

fn main() { let sigma = "Σ"; assert_eq!("σ", sigma.to_lowercase()); // but at the end of a word, it's ς, not σ: let odysseus = "ὈΔΥΣΣΕΎΣ"; assert_eq!("ὀδυσσεύς", odysseus.to_lowercase()); }
let sigma = "Σ";

assert_eq!("σ", sigma.to_lowercase());

// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";

assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());

Languages without case are not changed:

fn main() { let new_year = "农历新年"; assert_eq!(new_year, new_year.to_lowercase()); }
let new_year = "农历新年";

assert_eq!(new_year, new_year.to_lowercase());

fn to_uppercase(&self) -> String

Returns the uppercase equivalent of this string slice, as a new String.

'Uppercase' is defined according to the terms of the Unicode Derived Core Property Uppercase.

Examples

Basic usage:

fn main() { let s = "hello"; assert_eq!("HELLO", s.to_uppercase()); }
let s = "hello";

assert_eq!("HELLO", s.to_uppercase());

Scripts without case are not changed:

fn main() { let new_year = "农历新年"; assert_eq!(new_year, new_year.to_uppercase()); }
let new_year = "农历新年";

assert_eq!(new_year, new_year.to_uppercase());

fn escape_default(&self) -> String

Unstable (str_escape #27791)

: return type may change to be an iterator

Escapes each char in s with char::escape_default.

fn escape_unicode(&self) -> String

Unstable (str_escape #27791)

: return type may change to be an iterator

Escapes each char in s with char::escape_unicode.

fn into_string(self: Box<str>) -> String

Converts a Box<str> into a String without copying or allocating.

Examples

Basic usage:

fn main() { let string = String::from("birthday gift"); let boxed_str = string.clone().into_boxed_str(); assert_eq!(boxed_str.into_string(), string); }
let string = String::from("birthday gift");
let boxed_str = string.clone().into_boxed_str();

assert_eq!(boxed_str.into_string(), string);

Trait Implementations

impl Borrow<str> for String

fn borrow(&self) -> &str

impl Clone for String

fn clone(&self) -> String

fn clone_from(&mut self, source: &String)

impl FromIterator<char> for String

fn from_iter<I>(iterable: I) -> String where I: IntoIterator<Item=char>

impl<'a> FromIterator<&'a str> for String

fn from_iter<I>(iterable: I) -> String where I: IntoIterator<Item=&'a str>

impl FromIterator<String> for String

fn from_iter<I>(iterable: I) -> String where I: IntoIterator<Item=String>

impl Extend<char> for String

fn extend<I>(&mut self, iterable: I) where I: IntoIterator<Item=char>

impl<'a> Extend<&'a char> for String

fn extend<I>(&mut self, iterable: I) where I: IntoIterator<Item=&'a char>

impl<'a> Extend<&'a str> for String

fn extend<I>(&mut self, iterable: I) where I: IntoIterator<Item=&'a str>

impl Extend<String> for String

fn extend<I>(&mut self, iterable: I) where I: IntoIterator<Item=String>

impl<'a, 'b> Pattern<'a> for &'b String

A convenience impl that delegates to the impl for &str

type Searcher = &'b str::Searcher

fn into_searcher(self, haystack: &'a str) -> &'b str::Searcher

fn is_contained_in(self, haystack: &'a str) -> bool

fn is_prefix_of(self, haystack: &'a str) -> bool

fn is_suffix_of(self, haystack: &'a str) -> bool where Self::Searcher: ReverseSearcher<'a>

impl PartialEq<String> for String

fn eq(&self, other: &String) -> bool

fn ne(&self, other: &String) -> bool

impl<'a, 'b> PartialEq<str> for String

fn eq(&self, other: &str) -> bool

fn ne(&self, other: &str) -> bool

impl<'a, 'b> PartialEq<&'a str> for String

fn eq(&self, other: &&'a str) -> bool

fn ne(&self, other: &&'a str) -> bool

impl<'a, 'b> PartialEq<Cow<'a, str>> for String

fn eq(&self, other: &Cow<'a, str>) -> bool

fn ne(&self, other: &Cow<'a, str>) -> bool

impl Default for String

fn default() -> String

impl Display for String

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Debug for String

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Hash for String

fn hash<H>(&self, hasher: &mut H) where H: Hasher

fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher

impl<'a> Add<&'a str> for String

type Output = String

fn add(self, other: &str) -> String

impl Index<Range<usize>> for String

type Output = str

fn index(&self, index: Range<usize>) -> &str

impl Index<RangeTo<usize>> for String

type Output = str

fn index(&self, index: RangeTo<usize>) -> &str

impl Index<RangeFrom<usize>> for String

type Output = str

fn index(&self, index: RangeFrom<usize>) -> &str

impl Index<RangeFull> for String

type Output = str

fn index(&self, _index: RangeFull) -> &str

impl IndexMut<Range<usize>> for String

fn index_mut(&mut self, index: Range<usize>) -> &mut str

impl IndexMut<RangeTo<usize>> for String

fn index_mut(&mut self, index: RangeTo<usize>) -> &mut str

impl IndexMut<RangeFrom<usize>> for String

fn index_mut(&mut self, index: RangeFrom<usize>) -> &mut str

impl IndexMut<RangeFull> for String

fn index_mut(&mut self, _index: RangeFull) -> &mut str

impl Deref for String

type Target = str

fn deref(&self) -> &str

impl DerefMut for String

fn deref_mut(&mut self) -> &mut str

impl FromStr for String

type Err = ParseError

fn from_str(s: &str) -> Result<String, ParseError>

impl AsRef<str> for String

fn as_ref(&self) -> &str

impl AsRef<[u8]> for String

fn as_ref(&self) -> &[u8]

impl<'a> From<&'a str> for String

fn from(s: &'a str) -> String

impl Into<Vec<u8>> for String

fn into(self) -> Vec<u8>

impl IntoCow<'static, str> for String

fn into_cow(self) -> Cow<'static, str>

impl Write for String

fn write_str(&mut self, s: &str) -> Result<(), Error>

fn write_char(&mut self, c: char) -> Result<(), Error>

fn write_fmt(&mut self, args: Arguments) -> Result<(), Error>

impl AsRef<OsStr> for String

fn as_ref(&self) -> &OsStr

impl AsRef<Path> for String

fn as_ref(&self) -> &Path

Derived Implementations

impl Ord for String

fn cmp(&self, __arg_0: &String) -> Ordering

impl Eq for String

impl PartialOrd<String> for String

fn partial_cmp(&self, __arg_0: &String) -> Option<Ordering>

fn lt(&self, __arg_0: &String) -> bool

fn le(&self, __arg_0: &String) -> bool

fn gt(&self, __arg_0: &String) -> bool

fn ge(&self, __arg_0: &String) -> bool